Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Biomed ; 2(1): 40, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34918209

RESUMO

The Kirsten rat sarcoma virus transforming protein (KRAS) mutations (predominate in codons 12, 13, and 61) and genomically drive nearly one-third of lung carcinomas. These mutations have complex functions in tumorigenesis, and influence the tumor response to chemotherapy and tyrosine kinase inhibitors resulting in a poorer patient prognosis. Recent attempts using targeted therapies against KRAS alone have met with little success. The existence of specific subsets of lung cancer based on KRAS mutations and coexisting mutations are suggested. Their interactions need further elaboration before newer promising targeted therapies for KRAS mutant lung cancers can be used as earlier lines of therapy. We summarize the existing knowledge of KRAS mutations and their coexisting mutations that is relevant to lung cancer treatment, in this review. We elaborate on the prognostic impact of clinical and pathologic characteristics of lung cancer patients associated with KRAS mutations. We briefly review the currently available techniques for KRAS mutation detection on biopsy and cytology samples. Finally, we discuss the new therapeutic strategies for targeting KRAS-mutant non-small cell lung cancer (NSCLC). These may herald a new era in the treatment of KRASG12Cmutated NSCLC as well as be helpful to develop demographic subsets to predict targeted therapies and prognosis of lung cancer patients.

2.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-728619

RESUMO

Adenosine is a naturally occurring breakdown product of adenosine triphosphate and plays an important role in different physiological and pathological conditions. Adenosine also serves as an important trigger in ischemic and remote preconditioning and its release may impart cardioprotection. Exogenous administration of adenosine in the form of adenosine preconditioning may also protect heart from ischemia-reperfusion injury. Endogenous release of adenosine during ischemic/remote preconditioning or exogenous adenosine during pharmacological preconditioning activates adenosine receptors to activate plethora of mechanisms, which either independently or in association with one another may confer cardioprotection during ischemia-reperfusion injury. These mechanisms include activation of K(ATP) channels, an increase in the levels of antioxidant enzymes, functional interaction with opioid receptors; increase in nitric oxide production; decrease in inflammation; activation of transient receptor potential vanilloid (TRPV) channels; activation of kinases such as protein kinase B (Akt), protein kinase C, tyrosine kinase, mitogen activated protein (MAP) kinases such as ERK 1/2, p38 MAP kinases and MAP kinase kinase (MEK 1) MMP. The present review discusses the role and mechanisms involved in adenosine preconditioning-induced cardioprotection.


Assuntos
Trifosfato de Adenosina , Adenosina , Coração , Inflamação , Quinases de Proteína Quinase Ativadas por Mitógeno , Óxido Nítrico , Fosfotransferases , Proteína Quinase C , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores Opioides , Receptores Purinérgicos P1 , Traumatismo por Reperfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...